
INV ITED
P A P E R

Physical Unclonable Functions
and Applications: A Tutorial
This paper is a tutorial on ongoing work in physical-disorder-based security,

security analysis, and implementation choices.

By Charles Herder, Meng-Day (Mandel) Yu, Farinaz Koushanfar, and

Srinivas Devadas, Fellow IEEE

ABSTRACT | This paper describes the use of physical unclon-

able functions (PUFs) in low-cost authentication and key

generation applications. First, it motivates the use of PUFs

versus conventional secure nonvolatile memories and defines

the two primary PUF types: ‘‘strong PUFs’’ and ‘‘weak PUFs.’’ It

describes strong PUF implementations and their use for low-

cost authentication. After this description, the paper covers

both attacks and protocols to address errors. Next, the paper

covers weak PUF implementations and their use in key gene-

ration applications. It covers error-correction schemes such as

pattern matching and index-based coding. Finally, this paper

reviews several emerging concepts in PUF technologies such as

public model PUFs and new PUF implementation technologies.

KEYWORDS | Arbiter; index-based coding; pattern matching;

physical unclonable function (PUF); public model PUFs; ring

oscillator; SRAM; unclonable

I . INTRODUCTION

Mobile and embedded devices are becoming ubiquitous,

interconnected platforms for everyday tasks. Many such

tasks require the mobile device to securely authenticate

and be authenticated by another party and/or securely

handle private information. Indeed, smartphones have
become a unified platform capable of conducting financial

transactions, storing a user’s secure information, acting as

an authentication token for the user, and performing

many other secure applications. The development of

powerful mobile computing hardware has provided the

software flexibility to enable convenient mobile data pro-

cessing. However, comparable mobile hardware security

has been slower to develop. Due to the inherent mobility
of such devices, the threat model must include use cases

where the device operates in an untrusted environment

and the adversary has a degree of physical access to the

system.

The current best practice for providing such a secure

memory or authentication source in such a mobile system

is to place a secret key in a nonvolatile electrically erasable

programmable read-only memory (EEPROM) or battery-
backed static random-access memory (SRAM) and use

hardware cryptographic operations such as digital signa-

tures or encryption. This approach is expensive both in

terms of design area and power consumption. In addition,

such nonvolatile memory is often vulnerable to invasive

attack mechanisms. Protection against such attacks re-

quires the use of active tamper detection/prevention cir-

cuitry which must be continually powered.
Physical unclonable functions (PUFs) are a promising

innovative primitive that are used for authentication and

secret key storage without the requirement of secure

EEPROMs and other expensive hardware described above

[7], [34]. This is possible, because instead of storing secrets

in digital memory, PUFs derive a secret from the physical

characteristics of the integrated circuit (IC). For example,

this paper will discuss a PUF that uses the innate manu-
facturing variability of gate delay as a physical character-

istic from which one can derive a secret. This approach is

Manuscript received September 3, 2013; accepted April 8, 2014. Date of publication

May 30, 2014; date of current version July 18, 2014.

C. Herder and S. Devadas are with the Computer Science and Artificial Intelligence

Laboratory (CSAIL), Department of Electrical Engineering and Computer Science

(EECS), Massachusetts Institute of Technology, Cambridge, MA 02139 USA

(e-mail: cherder@mit.edu).

M.-D. Yu is with Verayo, Inc., San Jose, CA 95129 USA and also with the Computer

Security and Industrial Cryptography (COSIC) research group, KU Leuven,

Leuven-Heverlee B-3001, Belgium.

F. Koushanfar is with the Adaptive Computing and Embedded Systems Lab (ACES),

Department of Electrical and Computer Engineering (ECE), Rice University, Houston,

TX 77005 USA.

Digital Object Identifier: 10.1109/JPROC.2014.2320516

0018-9219 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1126 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

advantageous over standard secure digital storage for sev-
eral reasons.

• PUF hardware uses simple digital circuits that are

easy to fabricate and consume less power and area

than EEPROM/RAM solutions with antitamper

circuitry. In addition, simple PUF applications do

not require expensive cryptographic hardware

such as the secure hash algorithm (SHA) or a

public/private key encryption algorithm.
• Since the ‘‘secret’’ is derived from physical char-

acteristics of the IC, the chip must be powered on

for the secret to reside in digital memory. Any

physical attack attempting to extract digital infor-

mation from the chip, therefore, must do so while

the chip is powered on.

• Invasive attacks are more difficult to execute with-

out modifying the physical characteristics from
which the secret is derived. Therefore, continually

powered active antitamper mechanisms are not

required to secure the PUF [4].

• Nonvolatile memory is more expensive to manu-

facture. EEPROMs require additional mask layers,

and battery-backed RAMs require an external

always-on power source.

A PUF is based on the idea that even though the mask
and manufacturing process is the same among different ICs,

each IC is actually slightly different due to normal

manufacturing variability. PUFs leverage this variability to

derive ‘‘secret’’ information that is unique to the chip (a

silicon ‘‘biometric’’). In addition, due to the manufacturing

variability that defines the secret, one cannot manufacture

two identical chips, even with full knowledge of the chip’s

design. PUF architectures exploit manufacturing variability
in multiple ways. In addition to gate delay, architectures also

use the power-on state of SRAM, threshold voltages, and

many other physical characteristics to derive the secret.

This paper discusses the most popular PUF architec-

tures. After defining a conceptual model for a PUF, this

paper defines protocols to address two primary applica-

tions: strong authentication and cryptographic key gener-

ation. It then provides a case study on the most popular
approach to each of these respective applications. It fo-

cuses on the experimental results from extensively tested

realizations of actual PUF architectures that currently im-

plement these protocols in real-world applications. Finally,

this paper provides a perspective on future research relat-

ing to PUFs by briefly discussing current open problems as

well as the latest proposed solutions.

A. Previous Work: Unique Objects
Although many of the architectures that integrate PUFs

into existing IC technology are new, it should be noted that

the concepts of unclonability and uniqueness have been

used extensively in the past for other applications [13]. For

example, ‘‘unique objects’’ are well defined as objects with

a unique set of properties (a ‘‘fingerprint’’) based on the

unique disorder of the object [34]. This fingerprint should
be stable over time and robust to other environmental

conditions and to readout. Further, it must be ‘‘unclonable’’

in the sense that the cost to engineer and manufacture

another object with the same fingerprint must be prohi-

bitively expensive or impractical using known manufac-

turing techniques (including by the original manufacturer).

One example of early usage of unique objects for secu-

rity was proposed for the identification of nuclear weapons
during the Cold War [9]. One would spray a thin coating of

randomly distributed light-reflecting particles onto the

surface of the nuclear weapon. Since these particles are

randomly distributed, the resulting interference pattern

after being illuminated from various angles is unique and

difficult to reproduce.

Therefore, immediately after being applied, each inter-

ference pattern would be measured as a ‘‘signature’’ and
stored in a secure database. A weapon could then be iden-

tified at any later time by re-illuminating the surface and

comparing the interference pattern against the measured

interference pattern. At the time, it was presumed to be

infeasible to reproduce such an interference pattern even

if an adversary knew the illumination angle(s) and the

resulting pattern.

II . TYPES OF PUFs

The two primary applications of PUFs are for: 1) low-cost

authentication; and 2) secure key generation. These two

applications have resulted from the fact that PUFs de-

signed during the past decade have mostly fallen into two

broad categories. These categories are described as ‘‘strong

PUFs’’ and ‘‘weak PUFs.’’ Strong PUFs are typically used
for authentication, while weak PUFs are used for key

storage.

Each PUF can be modeled as a black-box challenge–

response system. In other words, a PUF is passed an input

challenge c, and returns a response r ¼ fðcÞ, where fð�Þ
describes the input/output relations of the PUF. The black-

box model is appropriate here, because the internal param-

eters of fð�Þ are hidden from the user since they represent
the internal manufacturing variability that the PUF uses to

generate a unique challenge–response set. Such param-

eters would include the variability of a circuit’s internal

gate delay as described in the Introduction. PUF security

relies on the difficulty of measurement or estimation of

these parameters as well as the difficulty of manufacturing

two chips with the same set of parameters.

The fundamental difference between weak and strong
PUFs is the domain of fð�Þ, or informally, the number of

unique challenges c that the PUF can process. A weak PUF

can only support a small number of challenges (in some

cases only a single challenge). A strong PUF can support a

large enough number of challenges such that complete

determination/measurement of all challenge–response

pairs (CRPs) within a limited timeframe is not feasible.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1127

A. Weak PUF Model
The first class of PUFs leveraging manufacturing varia-

bility are weak PUFs [also known as physically obfuscated

keys (POKs)]. These PUFs can be thought of as PUFs that

directly digitize some ‘‘fingerprint’’ of the circuit. This di-

rect measurement results in a digital signature that can be

used for cryptographic purposes. Because the fingerprint

signature remains largely invariant, this means that the

PUF can only be interrogated by one or a small number of
challenges. In the above black-box description, this corre-

sponds to fð�Þ having a domain of one or only a small

number of inputs. Correspondingly, fð�Þ will also have a

very small range, as a given challenge should always result

in the same response (ignoring noise, which is considered

later). One can clearly use several instances of the above

black box to support more CRPs or response bits. How-

ever, this is still considered a weak PUF, because the
number of responses is linearly related to the number of

components subject to manufacturing variation. Explicitly

stated, weak PUFs have the following properties:

• a small number of CRPs (linearly related to the

number of components whose behavior depends

on manufacturing variation);

• response is stable and robust to environmental

conditions and multiple readings so that a chal-
lenge always yields the same response;

• responses are unpredictable and depend strongly on

the innate manufacturing variability of the device;

• it is impractical to manufacture two devices with

the same physical fingerprint.

An example weak PUF is the power-on state of an

SRAM. Although a SRAM cell is symmetric, manufactur-

ing variability will give each cell a tendency toward a
logical ‘‘1’’ or ‘‘0’’ at power-on. This variability is random

across the entire SRAM, giving it a unique fingerprint on

power-on that can be identified. In this case, if the

‘‘response’’ consists of the entire SRAM state at power-on,

the notion of a ‘‘challenge’’ is not useful, as there is only

one possible ‘‘challenge’’: powering on the SRAM. The

output signature is always the same (ignoring noise). One

can allow for more output bits by increasing the size of the
SRAM, but the response space is still linearly related to the

number of components subject to manufacturing variation

(each SRAM cell). The SRAM is an extreme example of a

weak PUF in the sense that it only has one ‘‘CRP.’’

Note that since weak PUFs in general have only a small

number of CRPs, these pairs must be kept secret. If a weak

PUF only has one CRP, and it is revealed, then any device

can emulate the PUF. For this reason, weak PUFs are well
suited for use in key derivation processes. The PUF pro-

vides the randomness and secure storage, and the secret

key (derived from the PUF’s response bits) is never re-

vealed during operation.

Once the key is recovered by the PUF (this typically

requires error correction), any cryptographic process may

follow. For example, the weak PUF output may be used as

the key in a keyed-hash message authentication code
(HMAC) challenge–response sequence. In addition, the

output may be used as a secret key to encrypt/decrypt data

on the device.

B. Strong PUF Model
Strong PUFs differ from weak PUFs in that a strong

PUF can support a large number of CRPs. As a result, a

strong PUF can be authenticated directly without using
any cryptographic hardware. The requirements for a strong

PUF are:

• large enough challenge–response space such that

an adversary cannot enumerate all CRPs within a

certain fixed time (ideally, exponential in the

number of challenge bits);

• responses stable to environment, multiple readings;

• an adversary given a polynomial-sized sample of
adaptively chosen CRPs cannot predict the re-

sponse to a new, randomly chosen challenge;

• not feasible to manufacture two PUFs with the

same responses;

• the readout only reveals the response r ¼ fðcÞ and

no other data about the internal functionality of

the PUF.

It should be noted that a weak PUF can provide au-
thentication capabilities if the weak PUF is paired with

crypto hardware supporting HMAC or similar authentica-

tion processes (note that HMAC and others support

exponentially sized challenge–response spaces but their

use requires 100% response stability and, therefore, error-

correction logic). It should also be noted that the security

models for weak and strong PUFs differ. The output of a

weak PUF must be kept private, while a strong PUF’s
responses do not have the same restriction.

The strong PUF has the additional requirement of

readout access restriction [only r ¼ fðcÞ is revealed] due to

this difference in security models. In addition, to prevent

total enumeration of the strong PUF, one must also con-

sider the readout time of the PUF in conjunction with the

number of CRPs. A faster PUF response allows for faster

enumeration of all PUF CRPs. Since a weak PUF provides a
secret key, the surrounding digital cryptographic hardware

is responsible for limiting access to the weak PUF output.

However, the strong PUF does not require the use of

additional crypto hardware to provide authentication ser-

vices, and therefore must itself prevent unauthorized

access into its own internal structure.

C. Error Correction
Both weak and strong PUFs rely on analog physical

properties of the fabricated circuit to derive secret infor-

mation. Naturally, these analog properties have noise and

variability associated with them. Consider the example in-

troduced in Section I that uses gate delay. This delay

depends on temperature, supply voltage, and other envi-

ronmental parameters. As these parameters vary, so does

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1128 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

the ‘‘digital fingerprint’’ measured by the PUF. If the pa-
rameters vary too much, the digital key (for the weak PUF)

or response (for the strong PUF) will change, and the

crypto operation will fail.

The first mechanism to mitigate such effects is to use

differential design techniques to cancel out first-order en-

vironmental dependencies. Using the gate delay example,

typical PUFs using this effect will not measure a single

gate’s delay, but rather the difference between two iden-
tically designed, but distinct gates on a die. In this way, any

environmental factor should affect each gate equally.

Although differential design methodologies do improve

reliability, noise is still a factor in PUF design. Even in

optimal environmental conditions, noise will result in one

or several of the output bits of the PUF being incorrect for

any given challenge. Therefore, modern PUF designs em-

ploy multiple error-correction techniques to correct these
bits, improving reliability. However, many of these error-

correcting techniques have been shown to leak bits of the

secret key, since they require the computation and public

storage of syndrome bits. As such, an excess number of

PUF bits are generated and then downmixed to produce a

full entropy key.

In addition to standard error-correction techniques,

PUFs also use soft-decision coding. This coding technique
takes advantage of the reliability information of a given

response bit to improve error-correction performance.

This reliability information can be obtained from repeated

PUF response readings in the case of SRAM PUFs, or the

magnitude of frequency difference values in the case of

ring-oscillator PUFs. Both of these error-correcting

techniques will be discussed further in the context of the

weak and strong PUF examples to be presented in
Sections IV-E, VI-B, VI-C1, and VI-D1.

III . EXAMPLE STRONG
PUF ARCHITECTURES

A. Optical PUF
One of the first implementations of a strong PUF was

constructed by Pappu et al. in 2001 [30]. The paper terms

the device a ‘‘physical one-way function,’’ but the func-

tionality is identical to that of a strong PUF. Pappu et al.
describe a device with three primary components: 1) a

laser directed along the Z-axis that can be moved in the XY-

plane and whose polarization can be modified; 2) a sta-

tionary scattering medium that sits along the path of the

laser beam; and 3) an imaging device that records the
output ‘‘speckle’’ pattern of laser light exiting the scat-

tering medium.

In this device, the input challenge is a laser XY location

and polarization, and the response is the associated speckle

pattern. The speckle pattern is strongly dependent on the

input location/polarization because multiple scattering

events occur inside the scattering medium. In the imple-

mentation by Pappu et al., the scattering medium consisted
of a large number of randomly positioned 100-�m silica

spheres suspended in a hardened epoxy. Each sphere acts

as a small lens, refracting individual rays of light as they

move through the scattering block. The overall size of the

scattering block was on the order of 1-mm thickness.

Therefore, even a relatively simple optical path must en-

counter �10 spheres as it travels through the scattering

block.
All of these paths then are focused into an image on the

detector. It is intuitively true that each of these paths will

be very sensitive to input coordinates. Studies on speckle

patterns produced by reflection/transmission by rough

surfaces have found this to be true both experimentally and

mathematically [2]. In addition, the speckle pattern is also

sensitive to the internal structure of the scattering block.

Therefore, it is difficult to fabricate two blocks with iden-
tical speckle patterns. Finally, due to the complex nature of

the physical interactions, it is difficult to model the inter-

nal dynamics of the scattering medium. It is also difficult

to use the output speckle to determine properties of the

scattering block (such as the locations of the silica

spheres).

These assumptions, while not strictly based on known

computationally difficult problems, can be trusted to be
difficult due to the fact that ray-tracing electromagnetic

simulation is a well-studied field with established theo-

retical models and best practices. One can make the

statement that if an adversary were able to break the above

optical PUF by efficiently reproducing the physical device,

modeling the entire scattering block, or discovering the

sphere locations via observation of the speckle pattern, this

would represent a major advancement in the field of ray-
based models of electromagnetic simulation. It is for this

reason that Pappu et al. described this optical PUF as a

‘‘physical one-way function.’’

B. Arbiter PUF
Although the capabilities of the above optical PUF are

significant, and they represented a significant step forward

in the understanding and construction of PUFs, the prac-
tical applications are limited due to the macroscopic opti-

cal nature. This limitation stemmed from two properties.

First, the actual unclonable object (the scattering

block) was separate from the measurement apparatus (the

imaging device). As a result, the trust gained from

authenticating an optical PUF is more limited. In a prac-

tical use case, the objective of authenticating the PUF is

typically to authenticate the associated processor to which
it is connected. However, since the optical PUF is sepa-

rated from the digital measurement circuitry, an optical

PUF as described by Pappu et al. designed to authenticate

processor A can easily be detached from processor A and

connected to processor B. Processor B could then authen-

ticate itself as processor A. It is more desirable for the

digital measurement apparatus to be integrated in with the

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1129

PUF such that the PUF is not separable from the device it is

used to authenticate.

Second, since both key generation and authentication

applications use integrated electronics, a more practical
PUF would have the same properties as the optical PUF

and simultaneously be integrated directly with a con-

ventional complementary metal–oxide–semiconductor

(CMOS) process. This integration would be such that the

IC could not be separated from the PUF.

Silicon implementations of strong PUFs were described

in the paper by Gassend et al. beginning in 2002 using

manufacturing variability in gate delay as the source of
unclonable randomness [7]. In one implementation, a race

condition is established in a symmetric circuit. This is

shown in Fig. 1. An input edge is split to two multiplexors

(muxes). Depending on the input challenge bits ðX½0��
X½127�Þ, this path will vary. Although the layout is identical

(propagation time should be the same for each edge no

matter what challenge bits are chosen), manufacturing va-

riability in the gate delay of each mux will result in one edge
arriving at the latch first, and the latch acts as the ‘‘arbiter.’’

The output will, therefore, depend on the challenge bits.

In Fig. 1, there are 128 challenge bits and one response

bit. Of course, one typically operates multiple identical

circuits in parallel to achieve 128 response bits. In this

way, the arbiter PUF can be scaled to an almost arbitrary

number of CRPs.

The security of the arbiter PUF, like the optical PUF
before it, is based on assumptions regarding manufacturing

capabilities and ultimately metrology of the individual gate

delays. Because the design is symmetric, the design does

not contain any ‘‘secret’’ information. An adversarial man-

ufacturer that has the PUF design cannot manufacture a

duplicate PUF, because the behavior of the PUF is defined

by the inherent variability in the manufacturing process.

Even the original manufacturer of the PUF could not pro-
duce two identical PUFs, since this would require a sig-

nificant improvement in manufacturing control.

The second security assumption is that the individual

gate delays are difficult to measure directly. It assumes that

an invasive attacker would have difficulty in extracting the

individual delays even with physical access. This assump-

tion is based on the hypothesis that an invasive attacker

would destroy the gate delay properties using his/her
measurement techniques.

The last security assumption is that given a set of CRPs

from an arbiter PUF, an adversary could not calculate the

internal delays of the gates. For the architecture described

above, this is actually not the case. Each delay is indepen-

dent from all other delays, and the delays add linearly. As a

result, one can use standard linear system analysis to

intelligently gather data about the gate delays from the
response bits. In fact, it can be shown that this system

breaks after only a small number of challenges [17]. This

problem can be resolved by several approaches proposed

by Gassend et al. and described in Section IV-D.

Finally, in both optical and arbiter PUF architectures, it

should be noted that environmental factors play a signi-

ficant role. For the optical PUF, calibration of the input

location is a concern. In the case of the arbiter PUF, one
can easily recognize that environmental variations such as

temperature, supply voltage, aging, and even random noise

will affect the delay of each edge through the arbiter PUF.

In addition, if the delays are close enough, the latch’s setup

time will be violated, potentially resulting in an unpre-

dictable output. As a result, the response bits may not be

stable. In this case, error-correcting techniques are used to

increase the stability of the PUF while maintaining its
security. Techniques for accomplishing this will be cov-

ered in Section IV-E. Although key generation has zero

error tolerance, PUF authentication usually incorporates

an allowable error threshold, thereby decreasing the sta-

bility requirement, and often obviating the need for error

correction.

IV. LOW-COST AUTHENTICATION:
STRONG PUFS

The strong PUF architectures described above are typically

associated with the application of low-cost authentication.

Fig. 1. Arbiter PUF circuit. The circuit creates two delay paths with the same layout length for each input X, and produces an output Y

based on which path is faster.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1130 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

In this case, a strong PUF will replace the secure memory
and crypto hardware on an embedded device and is used to

securely identify the device to a server. Because the PUF

does not require secure nonvolatile memory, antitamper

circuitry, or additional supporting crypto acceleration

hardware, a PUF-based solution requires less area, power,

and mask layers than a traditional approach to secure

authentication.

A. Authentication Protocol
As described previously, the strong PUF receives a

challenge and generates a response. However, the require-

ments of a strong PUF state that an adversary provided

with polynomial CRPs should not be able to predict the

response to a new challenge.

Although this is a desirable property, it also presents a

usage problem. Since the PUF acts as a ‘‘black box,’’ even
the authentication server only has access to previously ob-

served CRPs and, therefore, also cannot predict the re-

sponse to a new challenge.

Therefore, the protocol for using PUFs is significantly

different than most public/private key cryptographic sys-

tems. Consider a server authenticating a client.

1) PUF is manufactured.

2) Server obtains access to PUF and generates a table
of CRPs. These pairs are stored in internal secret

storage.

3) PUF is given to the client.

4) The client submits a request to the server to

authenticate.

5) Server picks a known CRP and submits the chal-

lenge to the client.

6) The client runs the challenge on the PUF, returns
the response to the server.

7) Server checks to see that the response is correct

and marks the CRP as used.

Because the server cannot predict the PUF behavior, it

must internally store CRPs to be used later. Each CRP must

be used only once. Therefore, the server must either store

enough CRPs so that it will not run out, or it must pe-

riodically ‘‘recharge’’ the table by establishing secure com-
munication with an authenticated client and requesting

responses to new challenges. To address the CRP table

scalability problem, newer protocols based on storage of a

compact model for PUF have emerged. A brief discussion

of these protocols is included in Section VII-A.

Note that each client PUF will have unique CRPs, and

therefore can be individually authenticated. In addition,

the server must store tables of CRPs for each of the clients
to be authenticated.

B. Arbiter PUF Topologies
The initial implementation of silicon PUFs had known

security issues due to the fact that the delays were linearly

added to produce the resultant response bit [8]. As a result,

they could be learned with relative ease. This issue

naturally led to the introduction of other ‘‘nonlinear’’

effects to make such modeling attacks more difficult.

These efforts included xor arbiter PUFs, lightweight
secure PUFs, and feedforward arbiter PUFs [8], [16], [17],

[22], [39].

In a xor arbiter, multiple arbiter PUF outputs are

xor’ed to form a single response bit. This is shown in

Fig. 2. These structures have shown greater resilience

against machine learning attacks [24], [35]. Recent

studies have demonstrated the vulnerability of the xor

arbiters to a combination of machine learning and side-
channel attacks [19], [36]. Developing methods to

suppress the side channels could help in alleviating this

vulnerability.

C. Arbiter PUF Implementation
The arbiter PUF was implemented and studied by

Devadas et al. as a part of a radio-frequency identification

(RFID) IC fabricated in 0.18-�m technology [4]. In this
implementation, a single arbiter PUF is implemented on-

chip. This primitive has an input challenge of 64 bits and a

single output bit. To construct a k-bit response, a linear

feedback shift register (LFSR) is used to generate a pseu-

dorandom sequence based on the input challenge. The

PUF is then evaluated k times using k different bit vectors

from this larger pseudorandom sequence. Finally, to pre-

vent learning attacks on the PUF output bits, an additional
scrambling routine is performed.

In this implementation, area and power consumption

represented a major design constraint. Therefore, the

above PUF implementation with only a single arbiter is

used. As a result, the majority of the silicon area is con-

sumed by standard RFID components (RFID front–end,

one-time programmable memory, digital logic). The PUF

and associated LFSR have been implemented in less
than 0.02 mm2 using 0.18-�m fabrication technology. In

addition, the PUF only consumes dynamic power during

evaluation, and the power consumption was shown to be

small with respect to the power stored on the RFID chip.

In order to understand the PUF’s utility as an

identification and authentication source, intra-PUF and

inter-PUF variation are defined as follows [7].

Fig. 2. Four individual arbiter PUF circuits with nonlinearities

introduced via XOR’ing their outputs.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1131

• Intra-PUF variation: Defined as the number of bits

in a PUF response that vary when an identical

challenge is repeatedly queried on a given PUF

device in a changing environment. This variation is

due to this environmental change as well as statis-

tical noise. As a result, it is commonly represented

in the form of a statistical distribution. Intra-PUF

variation is a measure of the reproducibility of
responses from an individual PUF circuit.

• Inter-PUF variation: Defined as the number of bits

in a PUF response that vary between different

devices for a set of shared challenges. This is due to

differences between the physical ICs and is also

commonly represented in the form of a statistical

distribution. The inter-PUF variation is a measure

of the uniqueness of an individual PUF circuit.
For the application of secure authentication, intra-PUF

variation should be low (ideally 0%) so that the PUF can be

verified. On the other hand, inter-PUF variation should be

high (ideally 50% on average) so that two separate PUFs

have a maximally decorrelated responses. This behavior

has been observed for arbiter PUFs, as shown in Fig. 3.

Note that in this figure, the two interchip variations are

roughly 50% (128 bits out of 256), and the intrachip varia,
tions are much smaller (�10%). Clearly, the implemented

PUF has the desired properties. (However, it is also clear

that error correction must be used to compensate for the

�10% intrachip variation for key generation applications.)

D. Attacks on Arbiter PUFs
The security of a strong PUF depends on several factors

(if any one of these factors is compromised, the security of

the PUF itself is also compromised):

• difficulty of measurement of PUF internal param-

eters (only CRPs can be measured);

• difficulty of manufacturing ‘‘clones’’;

• difficulty of predicting PUF behavior based on past

CRPs.

For arbiter PUFs, an area of continued active research
is in ensuring the difficulty of predicting PUF behavior

based on past CRPs. In the RFID IC example, this issue is

addressed by ‘‘scrambling’’ the output bits of the PUF. In

other words, the output bits of the PUF pass through some

digital circuit that obfuscates the linear behavior of the

PUF before being returned as a response. The simple ar-

biter PUF implementation without output postprocessing

is linear and, therefore, significantly easier to predict. (We
note that this scrambling will increase the noise in the

output bits and, therefore, has to be done carefully.)

Studies have been performed by Majzoobi et al. [23]

and Rührmair et al. [35] using machine learning to predict

the behavior of PUFs after a certain number of CRPs have

been observed. In these studies, learning attacks were

perpetrated on simple arbiter PUFs, feedforward arbiter

PUFs, arbiter PUFs with output xor’ing, ‘‘lightweight
secure’’ arbiter PUFs (these use a more complicated output

postprocessing circuit, but are based on principles similar

to output xor’ing).

The linear behavior of simple arbiter PUFs was clearly

demonstrated, as a learning algorithm predicted the be-

havior of a 64-bit arbiter PUF with 95% accuracy after

observing 640 CRPs (the model training time on a stan-

dard PC was 0.01 s). To predict with 99.9% accuracy,
18 050 CRPs are needed to be observed (model training

time of 0.6 s). This demonstrates that the behavior of a

simple arbiter PUF can be learned efficiently [35].

In addition, PUFs with 64-bit challenges and 128-bit

challenges were tested. It was found that the number of

CRPs and model learning complexity scaled as expected

with the input challenge size. This proved to be true not

just for simple arbiter PUFs, but also for the nonlinear
implementations discussed below.

The arbiter PUF with output xor’ing, on the other

hand, is able to make the problem intractable to such

learning attacks. Rührmair et al. identified an exponential

dependence on the number of output xors and the re-

quired complexity of the learning attack. This is due in part

to the actual computational complexity of learning the

model. It is also due to the fact that this model learning
process is looking for a global optimum on a nonconvex

parameter space. As a result, the learning algorithm has

some probability of failure that scales inversely with the

size of the training set (the number of observed CRPs). If

the algorithm fails, it must be restarted again with differ-

ent parameters.

It was identified that an arbiter PUF with a 512-bit

challenge and eight output xors would defeat the machine
learning approaches used by Rührmair et al. in 2010. The

postprocessing scheme used in ‘‘lightweight secure’’ PUFs

proved to have the same exponential dependence with a

similar complexity requirement.

A newer set of attacks leveraging both machine learn-

ing and side-channel information has recently emerged

[19], [36]. It has been shown that by coordinated

Fig. 3. Code distance distribution for 256-bit PUF responses.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1132 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

application of timing or power side-channel analysis and
adapted machine learning techniques, very efficient

attacks can be performed, i.e., attacks that use linearly

many CRPs and low degree polynomial computation times.

The practical viability of the combined attacks has been

demonstrated by machine learning experiments on

numerically simulated CRPs. This work has shown that

xor arbiter PUF and lightweight PUFs have to be im-

plemented in such a manner that power side channels are
protected, else PUFs can be easily cloned.

One key consideration in studying the complexity of

PUFs is stability (described as ‘‘intra-PUF variation’’ in the

RFID IC example). This will be discussed further in

Section IV-E. However, it should be noted that although

output xor’ing has an exponential effect on modeling

complexity, it also has an exponential effect on decreasing

stability. In doing so, it decreases the effectiveness of a
PUF in an actual authentication environment and simul-

taneously decreases the accuracy requirement of an attack

model, as the greater intrinsic PUF error must be tolerated

by the authentication protocol.

The task of identifying an approach to exponentially

increase model complexity while only having a polynomial

effect decreasing PUF stability is an area of active

research.

E. Error Correction Versus Tolerance
In the RFID IC example, random noise contributes to

the PUF stability being roughly 90%, i.e., the intra-PUF

variation is �10%. In addition, this stability worsens when

the temperature changes.

In perhaps the earliest reference to error correction in

silicon PUFs, Gassend mentioned the use of 2-D Hamming
codes [6]. Suh suggested the use of Bose–Chaudhury–

Hochquenghen (BCH) codesVmore specifically the BCH

(255,63, t ¼ 30) code [38]. In this case, the PUF generates

255 bits, but the code exposes 192 syndrome bits publicly,

so the actual security of the system is at most 63 bits. This

error corrects at most 30 errors out of 255 bits. This

corresponds to a PUF with �88% stability.

In low-cost authentication applications, the host in-
stead gives a certain error tolerance or multiple authen-

tication opportunities to a PUF before rejecting the PUF as

invalid. Error tolerance is typically the preferred method-

ology. Using the arbiter PUF described with code distances

shown in Fig. 3, false positive/negative identification pro-

babilities were measured for specific allowed error toler-

ances. These data are summarized in Fig. 4.

Majzoobi et al. showed a strong PUF remote authen-
tication protocol which does not require traditional error

correction while also being secure against machine learn-

ing attacks [25], [31]. The protocol is inspired by the

pattern matching techniques described in Section VI-B but

is used for authentication rather than secret key genera-

tion. A large class of machine learning attacks are shown to

fail when applied to this protocol.

V. EXAMPLE WEAK PUF
ARCHITECTURES

A. Ring-Oscillator PUF
In addition to arbiter PUFs, the manufacturing variabi-

lity intrinsic to circuit gate delay can also be used to
instantiate a ‘‘ring-oscillator PUF’’ [39]. This PUF archi-

tecture contains N identically designed ring oscillators

synthesized onto a field-programmable gate array (FPGA)

or an application-specific integrated circuit (ASIC).

Due to the variation in delay of the inverters in the ring

oscillator, each will have a slightly different frequency.

The frequencies of two oscillators are measured and com-

pared to reveal one of the PUF output bits. If there are N
oscillators, there are NðN � 1Þ=2 possible pairings. How-

ever, the number of output bits is limited due to corre-

lations (if ring oscillator A is faster than B, and B is faster

than C, then clearly A is faster than C). For N oscillators,

there is a specific ordering of fastest to slowest. If the

oscillators are truly identical and manufacturing variation

dominates, then each of these N! orderings is equally

likely. Therefore, there are a maximum of logðN!Þ bits that
can be extracted from the PUF.

Note that the ring-oscillator PUF is a weak PUF, since

there are a limited number of ‘‘challenge bits’’ that can

configure the PUF’s operation. Once fabricated, the ring

oscillators’ frequency is set, so the output bits of the PUF

will always remain constant.

Because the ring-oscillator PUF measures differences

in gate delay like the arbiter PUF, the ring-oscillator PUF is
susceptible to the same set of environmental variations and

noise sources. Therefore, error correction will be equally

important in this application.

One approach that can be taken immediately to miti-

gate potential errors is to recognize that oscillators that are

‘‘close’’ in frequency have much greater likelihood of

causing an output error than oscillators that are ‘‘far apart’’

Fig. 4. False positives and negatives for strong PUF operation with a

given error tolerance.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1133

in frequency. This is because the small fluctuations in

oscillator frequency due to noise or environmental varia-

tions are less likely to cause a bit flip when the two oscil-
lator frequencies are far apart [39].

Therefore, at the time of provisioning, one can select

only pairs of oscillators whose frequencies are suffi-

ciently far apart to define the PUF output bits. This

increases the PUFs robustness toward noise and environ-

mental variations.

B. SRAM PUF
Both the arbiter PUF and the ring-oscillator PUF ulti-

mately depend on variations in the propagation delay of

gates. However, this is not the only physical property on

which a PUF can be built. A popular weak PUF structure

exploits the positive feedback loop in a SRAM or SRAM-

like structure shown in Fig. 5. A SRAM cell has two stable

states (used to store a 1 or a 0), and positive feedback to

force the cell into one of these two states and, once it is

there, prevent the cell from transitioning out of this state
accidentally.

A write operation forces the SRAM cell to transition

toward one of the two states. However, if the device pow-

ers up and no write operation has occurred, the SRAM cell

exists in a metastable state where theoretically, the feed-

back pushing the cell toward the ‘‘1’’ state equals the feed-

back pushing the cell toward the ‘‘0’’ state, thereby keeping

the cell in this metastable state indefinitely. In actual
implementations, however, one feedback loop is always

slightly stronger than the other due to small transistor

threshold mismatches resulting from process variation.

Natural thermal and shot noise trigger the positive feed-

back loop, and the cell relaxes into either the ‘‘1’’ or ‘‘0’’

state depending on this process variation.

Note that since the final state depends on the differ-

ence between two feedback loops, the measurement is
differential. Therefore, common mode noise such as die

temperature, power supply fluctuations, and common

mode process variations should not strongly impact the

transition.

Although this idea was patented in 2002, the first ex-

perimental implementation was performed in 2007, where

a custom SRAM array based on 0.13-�m technology was

shown to generate random values based on threshold mis-
matches [15], [37]. This work demonstrated a roughly

normal distribution of bits and more than 90% bit stability.

Additional work showed that SRAM initialization can pro-

duce a unique physical fingerprint for each chip [11], [12].

Like other strong and weak PUF implementations, the

SRAM PUF is also sensitive to noise. If the two feedback

loops of the SRAM cell are sufficiently close, then random

noise or other small environmental fluctuations can result
in an output bit flip. Therefore, error correction of this

output will be necessary.

Like the ring-oscillator PUF, the architecture of the

SRAM PUF can be used to make intelligent decisions re-

garding error coding. The key recognition is that the rela-

tive strengths of the two feedback loops in a SRAM cell are

relatively static. A cell strongly biased toward ‘‘1’’ or ‘‘0’’

will remain strongly biased toward ‘‘1’’ or ‘‘0,’’ respectively.
Therefore, by using repeated measurements, one can

assess the stability of a SRAM PUF output bit and selec-

tively use the most stable bits as the PUF output. This

process is used in conjunction with traditional coding

techniques to mitigate the noise inherent to SRAM PUFs.

VI. CRYPTOGRAPHIC KEY GENERATION:
WEAK PUFS

Due to their limited challenge–response space, weak PUF

architectures are typically used for cryptographic key

generation. In this case, a weak PUF will replace a secure

nonvolatile memory that would have stored the crypto-

graphic key. Once the key is derived from the weak PUF, it

is stored in secure volatile memory during the device’s

operation. This key can then be used for authentication,
encryption, and other cryptographic protocols. Due to the

fact that one or very few keys can be generated by the PUF,

the security of this key during operation is of paramount

importance. If the secure key is revealed, any device can

emulate the weak PUF.

A. Key Generation Protocol
Because weak PUFs like the ones discussed above have

effectively fixed ‘‘challenge bits,’’ the key generation proto-

col is fairly simple. In the case of the SRAM PUF, one

simply powers on the SRAM and observes the memory

state. Similarly for the ring-oscillator PUF, one simply

pairwise compares each of the oscillators in order to mea-

sure the correct ordering of oscillation frequency.

In both of these cases, the complexity lies in the limi-

tations of physical implementations that result in both
statistical and systematic noise that must be corrected/

mitigated. The actual approach used to address these issues

differs for SRAM and ring-oscillator PUFs because the

underlying physical implementation is different.

Ultimately, a stable set of unique bits is extracted from

the weak PUF. These bits can then be used in any of a

number of cryptographic protocols. Note that weak PUFs

Fig. 5. SRAM cell [12]. Vth differences in the transistors result in the

SRAM powering up in either a logic ‘‘0’’ (A ¼ 0, B ¼ 1) or logic ‘‘1’’

(A ¼ 1, B ¼ 0).

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1134 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

can be used for authentication (similar to strong PUFs)
even though they do not have a large number of CRPs. By

supplementing the weak PUF with a hardware HMAC/AES

implementation, one can achieve authentication capability

at the cost of the additional power and area required by the

cryptographic hardware primitives that embody the

HMAC/AES protocol.

B. Arbiter PUF With Pattern Matching
Error Correction

Although weak PUFs are typically used for secure key

generation due to their limited challenge–response space
size, protocols allowing for strong PUFs to be used in this

capacity have also been developed. A key challenge in

adapting strong PUFs to key generation is in correcting

errors in PUF response bits. To this end, Paral and Devadas

have proposed the use of a ‘‘pattern matching’’ technique

to correct for errors in strong PUFs for use as a key gene-

ration mechanism [29].

A full description of this work is beyond the scope of
this paper. In a nutshell, this approach reverses the tradi-

tional challenge–response format of a PUF. In this case, a

secret offset I is chosen (the key is derived from I). A W bit

portion of the response at offset I is published publicly. To

recover the key, a strong PUF iterates through a deter-

ministic set of challenges (which may depend on previous

secret data that have been measured). The PUF response to

this challenge contains the W pattern bits in the output.
The PUF uses an error-tolerant comparison circuit (up to T
bits of error) to identify the offset I of the W-bit block in

the PUF response bits. The secret key is then derived from

I. This process can be repeated several times to obtain

larger sets of secret bits.

The study identified that, with the correctly chosen

parameters (PUF output size: 1024, W: 256, T: 80), the

error occurrence could be decreased such that the PUF
always succeeded in regenerating the key on the first try

across environmental conditions.

C. SRAM PUF Implementation
As previously mentioned, the SRAM PUF leverages the

threshold voltage mismatch of transistors in a SRAM cell

due to manufacturing mismatch. This mismatch results in

a repeatable tendency to settle into a ‘‘1’’ or ‘‘0’’ state when

the SRAM cell is powered on with no writes occurring.

Several studies have constructed SRAM PUFs and analyzed

their properties.

One of the first implementations of such a chip iden-
tification system was tested by Su et al. with RFID ap-

plications [37]. In this study, a custom SRAM cell was

constructed to minimize potential systematic mismatch

between the two transistors. Such a skew would result in a

given SRAM cell being more likely to favor a ‘‘1’’ than a ‘‘0’’

or vice versa, even with random process variation. To pre-

vent such systematic skew, they used analog layout tech-

niques to construct a ‘‘symmetric’’ and ‘‘common centroid’’
layout of the SRAM cell.

The study demonstrated that the SRAM PUF behaved

as desired. After fabrication, an equal number of SRAM

cells tended toward ‘‘1’’ and ‘‘0’’ to within experimental

error for both layouts. The study identified that cell po-

sitioning within the SRAM, SRAM positioning on the

wafer, and subsequent wafers were all decorrelated with

the SRAM cell’s tendency toward ‘‘1’’ or ‘‘0.’’
A challenge arose with the recognition that roughly 4%

of the SRAM cells did not have enough mismatch to

strongly favor ‘‘1’’ or ‘‘0.’’ These cells probabilistically

settled into ‘‘1’’ or ‘‘0’’ at random due to the contributions

of thermal and shot noise. The number of these unstable

bits increased at temperature/voltage corners and as the

chip aged.

The study by Holcomb et al. tested the functionality of
SRAM PUFs on off-the-shelf RAM and processor products

such as the MSP430 and Intel’s WISP RFID device [11]. In

this application, the SRAM cell was a part of another on-

chip SRAM that was actively used for program/data and

not custom fabricated in any way to enhance stability or

skew performance.

In this way, an end user can use an existing off-the-

shelf component with no silicon modification and, using
software alone, implement a weak PUF for cryptographic

or identification purposes.

Although off-the-shelf SRAM cells are not optimized

for usage as a PUF, Holcomb et al. did observe a bit stability

of 5% across temperatures from 0 �C to 50 �C. This

stability is roughly the same as the stability measured by

Su et al., indicating that the custom fabrication did not

help significantly in this regard.
However, the off-the-shelf SRAM cells were observed

to have a significant bias toward the ‘‘1’’ state. This changes

the entropy and unique identification analysis. In this

study, 512 B of SRAM were used as a fingerprint. Due to

the systematic skew of the SRAM cells, the min-entropy of

this block was roughly 200 bits (plus/minus 10 bits de-

pending on temperature). This 512-B block was then

passed through a universal hash to extract 128 bits of
output data.

Finally, because the SRAM is being used as a memory

element for the processor, it is always powered, even if the

PUF section of the SRAM is never written during normal

operation. This continual powering of the SRAM in a ‘‘1’’

or ‘‘0’’ state results in negative bias temperature instabi-

lity (NBTI). This is a type of ‘‘burn-in’’ for deep submicro-

meter metal–oxide–semiconductor field-effect transistor
(MOSFET) technology, where the threshold voltage of a

transistor increases over time due to the applied stress

conditions of high temperature and a constant vertical

electric field across the gate terminal while the transistor

is ‘‘on.’’

Therefore, if a SRAM cell is powered on and set to the

‘‘0’’ state for a long time (�10 days), then on subsequent

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1135

power-on sequences, the cell is more likely to skew toward
the ‘‘1’’ state. This predictable behavior stands in contrast

to the behavior of temperature variations, which can either

skew the cell toward ‘‘0’’ or ‘‘1’’ as the temperature

fluctuates.

1) SRAM PUF Error Correction: Because these papers

targeted the application of die identification, rather than

key generation, this problem could be sidestepped by a
statistical analysis of the probability that two independent

dies would have IDs that were close enough to be misiden-

tified as a result of this noise. Unfortunately, the nature of

cryptographic operations is such that not even a single bit

can be incorrect. This will require a different approach to

error correction.

Maes et al. describe a low-overhead approach to imple-

menting a soft-decision helper algorithm [18]. They de-
scribe a method wherein one collects confidence data in

each bit by taking between 10 and 100 measurements of

the SRAM PUF with N output bits prior to provisioning.

This yields an output estimate vector X 2 f0; 1gN, and a

vector of error probabilities Pe, where the ith element of

this vector corresponds to the probability that a measure-

ment of Xi will be erroneous. Going forward, X serves as

the ‘‘fuzzy secret,’’ and Pe is public information. It has been
proven by Maes et al. that revealing Pe does not leak any

min-entropy of the response X. This work goes on to de-

scribe an implementation where the above soft-decision

helper algorithm is combined with Reed–Muller codes and

a universal hash function to distill the PUF output bits to a

full-entropy reproducible secret key. This implementation

takes 1536 SRAM PUF response bits (78% min-entropy

with an average bit-error probability of 15%), and distills
these data down to a 128-bit full-entropy key with a failure

rate of � 10�6. This approach demonstrates the feasibility

of using SRAM PUFs as cryptographic key sources in spite

of the errors inherent in SRAM PUF output bits.

2) Attacks on SRAM PUFs: Because the SRAM PUF

provides a secure key (as opposed to providing challenge–

response functionality like the strong PUF), it relies on
other conventional security primitives to keep that key

protected while the chip is powered. As a result, any side

channel or other vulnerabilities associated with the cryp-

tographic hardware pose a threat to the secret key out-

putted by the SRAM PUF. In addition, since this key is

kept secret, the modeling attacks used against strong PUFs

cannot be used, since no input/output relations of the PUF

should ever be revealed.
However, there are other ways identified in the liter-

ature to attack a SRAM PUF more directly. Many of these

depend on the level of access that one has to the SRAM. If

one can insert a ‘‘write’’ command, then one could leverage

the NBTI to deliberately force individual bits toward ‘‘1.’’ If

one could modify the temperature, one could potentially

cause the PUF to fail by running the PUF outside its design

area. Finally, the ability for a SRAM cell to maintain its
state depends on the supply voltage. If, during the turn-on

process, the supply voltage is held for some time at a low

(�100 mV) voltage, the thermal noise will induce a tran-

sition into the cell’s favored state, resulting in higher

stability. However, if the voltage turn-on is fast, then cells

become less stable. An attacker with access to the power

channel could potentially control the stability of some of

the SRAM PUF bits through this mechanism [12].
Recently, it has also been identified by Helfmeier et al.

that the SRAM power-on state can be observed via near-

infrared imaging of the SRAM during the turn-on tran-

sient. Once the SRAM ‘‘fingerprint’’ has been measured (the

PUF response bits have been stolen), one can use focused ion

beam (FIB) techniques to modify a second IC to have a

matching fingerprint as the first by cutting traces and/or

demolishing transistors in the SRAM cell [10].
Finally, one notes that SRAM data are not erased im-

mediately on power down. The data remain ‘‘stored’’ in the

SRAM cell for a certain short time after the cell is powered

down due to an effect called ‘‘data remanence.’’ Oren et al.
have demonstrated that this effect can be used to inject

faults into the SRAM PUF. In doing so, one can nonin-

vasively learn the SRAM PUF output bits indirectly [28].

D. Ring-Oscillator PUF Implementation
Yu and Devadas designed a delay-based weak PUF

based on the ring-oscillator architecture, and proposed the

first PUF key generation architecture that does not require

traditional error correction [40]–[42]. The proposed

index-based syndrome coding method is a departure

from prior error-correction schemes based on code-offset

syndrome [5], where the syndrome format enables soft-
decision functionality without the complexities associated

with an explicit traditional soft-decision error-correction

decoder, which in general has a higher complexity than an

equivalent hard-decision error-correction decoder.

In this architecture, several oscillator PUF banks are

instantiated, with each oscillator bank comprising 2k ring

oscillators. A k-bit challenge is applied to each bank, to

determine which oscillators correspond to the top delays,
and which oscillators correspond to the bottom delays. The

top and bottom rows are summed to produce x and y,

respectively. These values are used to produce a single bit

PUF output and associated ‘‘soft-decision’’ information

corresponding to a PUF challenge. Specifically, the output

bit is the sign of x–y. The ‘‘confidence’’ (discussed more in

Section VI-D1) is derived from the magnitude of x–y.

Fig. 6 shows a simplified diagram for illustrative pur-
poses. More complex ‘‘recombination’’ functions using

xors or amplitude modulation based on additional chal-

lenge bits were used in actual implementation.

Each of the oscillators is configured with ‘‘challenge

bits.’’ For the purpose of cryptographic key generation,

these bits are fixed (see the ‘‘fixed challenge’’ in Fig. 6) in

order to reproduce the same key each time.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1136 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

Yu et al. designed multiple circuit topologies to imple-

ment this technique using a 0.13-�m CMOS process [42].

They found that, as expected, these devices produced out-
put bits that passed all National Institute of Standards and

Technology (NIST) standard randomness tests, demon-

strated close to ideal decorrelation between different PUF

devices, had a worst case bit bias less than 0.5%, and a raw

intradevice variation of �10%.

1) Ring-Oscillator PUF Error Correction: Like the SRAM

PUF, the ring-oscillator PUF also must correct for noise
and environmental factors. The primary noise sources for

ring-oscillator PUF architectures are similar to those for

analog electronics. First, the die temperature and source

voltage affect the gate delay in a known way. If the two

frequencies are too close together, this noise will poten-

tially change the output measurement bit.

The ring-oscillator PUF is inherently a differential

measurement (measuring the difference in two identical
sets of oscillators’ paths). However, it is still susceptible to

noise. As mentioned for arbiter PUFs, one can use block

error codes, but this leaks some of the bits of the secret

key. This is very undesirable for a weak PUF. In the case of

the SRAM PUF mentioned above, Maes et al. were able

to leverage the ‘‘confidence’’ in a given bit to improve

coding efficiency. Yu and Devadas proposed a new error-

correction scheme, ‘‘index-based coding’’ (IBS), that lever-
ages this same principle for ring-oscillator PUFs [40] but

does not require repeated PUF response measurements.

As mentioned above, if two sets of oscillators have fre-

quency sums that are close together, then the readout

circuit will not always report the same output bit due to

slight frequency variations caused by noise and other en-

vironmental factors. Simply put, the output bit will take a

value of either 0 or 1 with some probability. In such a
situation, the ‘‘confidence’’ of a 0 or 1 measurement should

be relatively low.

The IBS coding scheme recognizes the relative confidence

in each bit measurement and adaptively chooses more

confident bits to be part of the PUF output. In doing so, this
increases the response reproducibility and decreases error.

In addition to being more efficient than block codes, Yu

and Devadas also showed that the scheme leaked no infor-

mation about the PUF itself under the assumption that the

PUF output bits are independent and identically distrib-

uted (i.i.d.). Note that i.i.d. is the same assumption used by

Maes et al. in proving security of the use of the probability

of bit error Pe in their scheme. This is a common assump-
tion made about PUFs, but it is actually difficult to validate

in practice. Nevertheless, this is to be contrasted with the

previous use of block codes (Maes’ method layers block

coding on top of Pe, with Pe portion proved to be informa-

tion theoretically secure), which do leak some information

even under a PUF i.i.d. assumption (consider a PUF with a

bias of 1% and use of repetition coding). By contrast, IBS,

even when used with a second stage traditional (hard-
decision) error correction, remains information theoreti-

cally secure under a PUF i.i.d. assumption, even for a

heavily biased PUF. IBS decouples the PUF bias statistics

from the syndrome leakage security in an i.i.d. PUF setting.

A full description of the IBS coding scheme is outside

the scope of this paper. Yu and Devadas implemented an

IBS code on a delay-based PUF with a challenge block size

of 63 bits and an average of 25 errors to correct (35.9%
error) in each block. Using the IBS approach, this was

reduced to a 6-bit error (9.4%). It was identified that the

probability of seven or more errors was less than 0.5 ppm,

so a BCH (63, 30, t ¼ 6) code was used. This system suc-

cessfully corrected errors across environmental conditions

without failure.

In the study by Yu et al. in 2012, similar results were

obtained [42]. In this study, and IBS coding scheme was
used followed by the same BCH (63, 30, t ¼ 6) code. It

was observed across the four extreme voltage–temperature

corners that not only did the error-corrected PUF never

output an erroneous bit, but also the maximum number of

errors output from the IBS scheme (the number of errors

that the BCH code had to correct) was three. The BCH

code can correct up to six errors, so the design was shown

to have a ‘‘stability safety margin’’ of 50%.

2) Attacks on Ring-Oscillator PUFs: Like the SRAM PUF,

the ring-oscillator PUF relies on downstream cryptograph-

ic hardware/software to protect the security of the key that

is generated. However, there are ways of potentially modi-

fying the ring-oscillator PUF’s behavior. Such an attack

does not reveal the output key, but may be able to in-

fluence the device to either fail to regenerate a key (denial
of service), or even manipulate secret key bits if such an

attack were to occur during provisioning.

For example, it was shown in 2009 that driving a sinu-

soidal signal on the ground plane of a ring oscillator can

cause it to ‘‘lock’’ to that signal [26]. This study demon-

strated such an attack compromising a true random

number generator (TRNG). Although an attack on a PUF

Fig. 6. A k-sum ring-oscillator PUF. Ring oscillators that are closer in

frequency do not affect the output bit due to the summation process.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1137

would have to take into account its differential nature, the
same principle can be used. By locking the frequency, an

attacker can drive the frequency of a given PUF to a

desired value without invasive measures.

In addition, it was shown in 2011 that the electromag-

netic radiation from the ring-oscillator PUF could also be

used to steal the output bits [27]. This attack can be defeated

by running several oscillators in parallel, which has been

done in many studies on the ring-oscillator PUF, some of
which predate the identification of the attack [40]–[42].

VII. EMERGING PUF CONCEPTS

Although existing PUF technology has been successful in

addressing applications in low-cost authentication and

secure key generation, PUF technology still has significant

untapped potential. New PUF architectures and applica-
tions are continually being developed. A full review of each

of these paths is outside the scope of this paper, but a few

of the popular emerging trends will be covered. For a more

comprehensive coverage, we refer interested readers to a

recent article on the topic [32].

A. Model-based PUFs
When considering the application of low-cost authen-

tication, one of the primary drawbacks of strong PUF

architectures is the establishment of the secret challenge–

response table. Not only does this require the server to

securely communicate with the PUF prior to any authen-

tication rounds in a ‘‘secure bootstrapping’’ phase, but also

once a CRP is used, it must be discarded and never used

again. Therefore, the server must collect a large number of

CRPs at manufacture and store them secretly. For large
applications with thousands of PUF clients, this corre-

sponds to a large amount of required secret storage.

To mitigate these challenges, researchers have recog-

nized that if a PUF could have an associated ‘‘secret model’’

that emulates the PUF challenge–response behavior, then

the secure storage requirements could be alleviated [3],

[21], [24]. The secret model in the case of an arbiter PUF

would be the delays of the individual stages. Newer delay-
based PUF constructions have even used this compact

model to link software-based attestation to intrinsic device

characteristics [14]. This linking enables secure timed (and

even) remote attestation.

Such a ‘‘secret model’’ PUF still requires both the

‘‘secure bootstrapping’’ phase as well as the secure storage,

as the PUF and authenticating server must ‘‘agree’’ on a

secret PUF model that describes the PUF behavior. This
model must be kept secret, as it exactly describes the PUF

behavior and can be used to spoof an authentication

sequence. However, a server may now choose any random

challenge and independently compute the correct PUF

response. Further, an encrypted model can be stored on

the PUF device and a reader that knows the encryption key

can authenticate the device in an offline fashion.

B. Timed Authentication and Public Models
Although the secure model PUF architecture de-

scribed above mitigates the secure storage requirement for

PUF usage in authentication applications, it still requires

secure bootstrapping and secure storage of the secret

model.

Both of these requirements are alleviated by a new

type of PUF described as timed authentication PUFs,

public model PUFs (PPUFs), or SIMulation Possible but
Laborious (SIMPL) systems [1], [20], [24], [33]. This paper

will refer to this concept as a PPUF. An FPGA

implementation of the PPUF was proposed alongside the

concepts of an FPGA erasable PUF [20], [21]. A full

characterization and compaction of the physical delays of

the FPGA components is performed.

A PPUF has a model that emulates the challenge–

response behavior of the PPUF hardware. This model is
publicVknown to everyone. The key difference between

the PPUF model and the PPUF hardware is that the PPUF

hardware computes the response in a measurably faster

time. Therefore, the authentication scheme works as fol-

lows (where a server is authenticating a Client):

1) server obtains the desired PPUF model from a

trusted third party storage;

2) server generates a challenge and computes the
response using the PPUF model;

3) server sends challenge to the client and begins timer;

4) the client uses its PPUF hardware to compute a

response and sends it back to the server;

5) server measures the client response time T;

6) server accepts if T G T0 and client’s response is

correct.

In the above scheme, first note that the PPUF model is
stored publicly. Although it may be publicly read, the

PPUF model storage must be resistant against tampering or

rewriting, as the server must be able to trust that a given

PPUF model is associated with a certain PPUF hardware

owner. This can be done using the traditional public key

infrastructure (PKI) or other similar roots of trust.

In addition, the server must be able to establish some

value T0 as described in the above scheme. This time is
1) long enough to allow the PPUF hardware to compute the

response and allow for roundtrip network latency; and

simultaneously, 2) short enough that no model could

emulate the PPUF hardware and correctly produce a re-

sponse in that time. This establishment of T0 is the funda-

mental challenge of designing a PPUF capable of enacting

the above authentication scheme.

It is clear that such a PPUF system would have wide-
spread application. The key recognition demonstrating the

power of a PPUF is that the PPUF hardware contains no

secrets. Counterintuitively, the device is still capable of

securely authenticating itself to any server. The server also

contains no secret information. Simply put, there is no

secret information anywhere in the protocol. The authen-

tication capability derives solely from the computational

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1138 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

difference between the hardware and the model, and the
unclonability of the hardware.

With this in mind, applications in embedded security

are immediately obvious. A modern embedded electronic

device being authenticated by a server currently uses se-

cure nonvolatile memory (NVM) to store secret bits. Even

strong and weak PUFs can be considered as ‘‘storage’’

devices using manufacturing variation in variables such as

dopant concentration to store secret bits. In all modern
electronics, this secure storage acts as the ‘‘root of trust’’ on

which all authentication and cryptographic mechanisms

are based. If the secret bits can be stolen (in the case of

secure NVM) or approximated (in the case of PUF mod-

eling), then the security is broken.

In the case of a PPUF, there are no bits to steal. The

security is instead based on the difficulty of reproducing an

exact copy of the PPUF hardware. This represents a funda-
mental shift in security paradigms. Using this mechanism, a

secure embedded system can be deployed in a highly un-

trusted environment with a strong threat model (an adver-

sary already has access to both the PPUF design and PPUF

model) and still act as a trusted authentication source.

C. New PUF Architectures
The current primary open problem to PPUF design is

the identification of a system with a provable T0 parameter

as described in Section VII-B. Intuitively, one immediately

would hope for a provable asymptotic separation between

the PPUF computational hardware and the computational

hardware used to execute the model. Such a separation has

been observed between computers leveraging quantum

effects and classical computers, but such quantum

computational devices are still not close to the scale
required for such cryptographic applications.

Therefore, classical systems must be considered for

potential practical PPUF implementations. It is recognized

that such an asymptotic speedup between the PPUF hard-

ware and the computer running the model is not possible.

Classical dynamical systems at a fundamental level are

governed by local differential equations (e.g., Maxwell’s

equations, Lagrangian mechanics, and Newtonian gravita-
tion). As a result, one can see that a discretized universe

can be simulated with only constant factor slowdown.

Qualitatively speaking, one can imagine a computer

with a processor dedicated to simulating each point in

space and communicates with its neighbors. Each time
step can then be simulated in constant time by this set of

processors running in parallel. Therefore, with enough

parallelism, any classical system can be simulated with

only constant factor slowdown.

Therefore, if one accepts that the PPUF model will only

be slower than the PPUF hardware by a constant factor, the

next step is to design a system with bounds on this constant

factor. If a model is provably 106� slower than the PPUF
hardware, then this constant factor is large enough to de-

rive an acceptable T0 for PPUF operation.

Many PPUF architectures have been proposed [1], [20],

[21], [33]. However, to date, the authors are unaware of a

proposed PPUF architecture where such constant factor

bounds are provable, or even those with bounds that can be

strongly argued.

To establish such bounds, one first recognizes that any
computational model will use CMOS technology, since

CMOS is simultaneously the fastest and least expensive

computational platform currently available. In recognizing

this fact, one can then identify the minimum timescale of

active CMOS devices as a comparison benchmark to the

timescale of the differential equations describing the PPUF

hardware system.

One potential avenue of approach that has been
identified is in the use of optoelectronics. Optoelectronic

systems simultaneously have fast enough internal dynam-

ics to allow for significant constant factor slowdown, and

are also integrable into existing CMOS processes.

In conclusion, this paper has introduced two primary

applications of PUF technology: low-cost authentication

and secret key generation. It has covered several of the

most popular approaches to each of these applications,
including arbiter PUFs, SRAM PUFs, and ring-oscillator

PUFs. It has discussed potential mathematical and phy-

sical attacks on each PUF technology as well as popular

error-correcting techniques for each. Finally, this paper

discusses new PUF technologies such as PPUFs that

demonstrate that PUF technology still has tremendous

untapped potential. PUFs provide a new, secure technol-

ogy for authentication and secure key storage with many
advantages over existing approaches. New PUF error-

correction approaches and technologies such as PPUFs

represent an exciting new frontier for both PUF research

as well as cryptography as a whole. h

RE FERENCES

[1] N. Beckmann and M. Potkonjak,
‘‘Hardware-based public-key cryptography
with public physically unclonable functions,’’
Information Hiding, vol. 5806. Berlin,
Germany: Springer-Verlag, 2009, pp. 206–220,
ser. Lecture Notes in Computer Science.

[2] C. Dainty, Laser Speckle and Related
Phenomena. New York, NY, USA:
Springer-Verlag, 1984.

[3] S. Devadas, ‘‘Non-networked RFID PUF
authentication,’’ U.S. Patent 8 683 210,
U.S. Patent Appl. 12/623 045, 2008.

[4] S. Devadas, E. Suh, S. Paral, R. Sowell,
T. Ziola, and V. Khandelwal, ‘‘Design and
implementation of PUF-Based ‘unclonable’
RFID ICs for anti-counterfeiting and security
applications,’’ in Proc. IEEE Int. Conf. RFID,
May 2008, pp. 58–64.

[5] Y. Dodis, L. Reyzin, and A. Smith, ‘‘Fuzzy
extractors: How to generate strong keys
from biometrics and other noisy data,’’
Advances in CryptologyVEurocrypt 2004,
vol. 3027. Germany: Springer-Verlag,
2004, pp. 523–540, ser. Lecture Notes in
Computer Science.

[6] B. Gassend, ‘‘Physical random functions,’’
M.S. thesis, Dept. Electr. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge,
MA, USA, Jan. 2003.

[7] B. Gassend, D. Clarke, M. van Dijk, and
S. Devadas, ‘‘Silicon physical random
functions,’’ in Proc. 9th ACM Conf. Comput.
Commun. Security (CCS), 2002, pp. 148–160.

[8] B. Gassend, D. Lim, D. Clarke, M. van Dijk,
and S. Devadas, ‘‘Identification and
authentication of integrated circuits,’’
Concurrency Comput., Practice Exp., vol. 16,
no. 11, pp. 1077–1098, 2004.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1139

[9] S. Graybeal and P. McFate, ‘‘Getting out
of the STARTing block,’’ Sci. Amer., vol. 261,
no. 6, 1989.

[10] C. Helfmeier, C. Boit, D. Nedospasov, and
J.-P. Seifert, ‘‘Cloning physically unclonable
functions,’’ in Proc. IEEE Int. Symp.
Hardware-Oriented Security Trust, 2013,
DOI: 10.1109/HST.2013.6581556.

[11] D. Holcomb, W. Burleson, and K. Fu, ‘‘Initial
SRAM state as a fingerprint and source of
true random numbers for RFID tags,’’
presented at Conf. RFID Security, Malaga,
Spain, Jul. 11–13, 2007.

[12] D. Holcomb, W. Burleson, and K. Fu,
‘‘Power-up SRAM state as an identifying
fingerprint and source of true random
numbers,’’ IEEE Trans. Comput., vol. 58, no. 9,
pp. 1198–1210, Sep. 2009.

[13] D. Kirovski, ‘‘Anti-counterfeiting: Mixing
the physical and the digital world,’’ Towards
Hardware-Intrinsic Security, A.-R. Sadeghi and
D. Naccache, Eds. New York, NY, USA:
Springer-Verlag, 2010, pp. 223–233.

[14] J. Kong, F. Koushanfar, P. K. Pendyala,
A.-R. Sadeghi, and C. Wachsmann, ‘‘PUFatt:
Embedded platform attestation based on
novel processor-based PUFs,’’ presented at
the ACM/IEEE Design Autom. Conf.,
San Francisco, CA, USA, Jun. 1–4, 2014.

[15] P. Layman, S. Chaudhry, J. Norman, and
J. Thomson, ‘‘Electronic fingerprinting
of semiconductor integrated circuits,’’
U.S. Patent 6 738 294, Sep. 2002.

[16] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh,
M. van Dijk, and S. Devadas, ‘‘A technique
to build a secret key in integrated circuits
with identification and authentication
applications,’’ in Proc. IEEE VLSI Circuits
Symp., 2004, pp. 176–179.

[17] D. Lim, ‘‘Extracting secret keys from
integrated circuits,’’ M.S. thesis, Dept. Electr.
Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, May 2004.

[18] R. Maes, P. Tuyls, and I. Verbauwhede,
‘‘Low-overhead implementation of a soft
decision helper data algorithm for SRAM
PUFs,’’ Cryptographic Hardware and Embedded
SystemsVCHES 2009, vol. 5747. Berlin,
Germany: Springer-Verlag, 2009, pp. 332–347,
ser. Lecture Notes in Computer Science.

[19] A. Mahmoud, U. Rührmair, M. Majzoobi, and
F. Koushanfar, ‘‘Combined modeling and side
channel attacks on strong PUFs,’’ Rep. 2013/
632, 2013.

[20] M. Majzoobi, A. Elnably, and F. Koushanfar,
‘‘FPGA time-bounded unclonable
authentication,’’ Information Hiding, vol. 6387.
Berlin, Germany: Springer-Verlag, 2010,

pp. 1–16, ser. Lecture Notes in Computer
Science.

[21] M. Majzoobi and F. Koushanfar,
‘‘Time-bounded authentication of FPGAs,’’
IEEE Trans. Inf. Forensics Security, vol. 6,
no. 3, pt. 2, pp. 1123–1135, Sep. 2011.

[22] M. Majzoobi, F. Koushanfar, and
M. Potkonjak, ‘‘Lightweight secure PUFs,’’
in Proc. ACM/IEEE Int. Conf. Comput.-Aided
Design, 2008, pp. 670–673.

[23] M. Majzoobi, F. Koushanfar, and
M. Potkonjak, ‘‘Testing techniques
for hardware security,’’ in Proc. IEEE
Int. Test Conf., 2008, DOI: 10.1109/
TEST.2008.4700636.

[24] M. Majzoobi, F. Koushanfar, and
M. Potkonjak, ‘‘Techniques for design
and implementation of secure reconfigurable
PUFs,’’ ACM Trans. Reconfigurable Technol.
Syst., vol. 2, no. 1, 2009, DOI: 10.1145/
1502781.1502786.

[25] M. Majzoobi, M. Rostami, F. Koushanfar,
D. S. Wallach, and S. Devadas, ‘‘Slender
PUF protocol: A lightweight, robust, secure
authentication by substring matching,’’ in
Proc. IEEE Symp. Security Privacy Workshops,
2012, pp. 33–44.

[26] A. T. Markettos and S. W. Moore,
‘‘The frequency injection attack on
ring-oscillator-based true random number
generators,’’ in Proc. Int. Workshop Cryptogr.
Hardware Embedded Syst., 2009, pp. 317–331.

[27] D. Merli, D. Schuster, F. Stumpf, and G. Sigl,
‘‘Semi-invasive em attack on FPGA RO PUFs
and countermeasures,’’ in Proc. Workshop
Embedded Syst. Security, 2011, pp. 2:1–2:9.

[28] Y. Oren, A.-R. Sadeghi, and C. Wachsmann,
‘‘On the effectiveness of the remanence decay
side-channel to clone memory-based PUFs,’’
in Proc. Int. Workshop Cryptogr. Hardware
Embedded Syst., 2013, pp. 107–125.

[29] R. S. Pappu, Z. Paral, and S. Devadas,
‘‘Reliable and efficient PUF-based key gener-
ation using pattern matching,’’ in Proc. IEEE
Int. Symp. Hardware-Oriented Security Trust,
2011, pp. 128–133.

[30] R. S. Pappu, P. S. Ravikanth, B. Recht,
J. Taylor, and N. Gershenfeld, ‘‘Physical
one-way functions,’’ Science, vol. 297,
pp. 2026–2030, 2002.

[31] M. Rostami, M. Majzoobi, F. Koushanfar,
D. Wallach, and S. Devadas, ‘‘Robust
and reverse-engineering resilient PUF
authentication and key-exchange by
substring matching,’’ IEEE Trans. Emerging
Topics Comput., 2014, DOI: 10.1109/TETC.
2014.2300635.

[32] M. Rostami, J. B. Wendt, M. Potkonjak, and
F. Koushanfar, ‘‘Quo vadis, PUF?: Trends
and challenges of emerging physical-disorder
based security,’’ in Proc. Conf. Design Autom.
Test Eur., 2014, article 352.

[33] U. Rührmair, ‘‘SIMPL systems: On a public
key variant of physical unclonable functions,’’
International Association for Cryptologic
Research, Tech. Rep., 2009.

[34] U. Rührmair, S. Devadas, and F. Koushanfar,
‘‘Security based on physical unclonability
and disorder,’’ Introduction to Hardware
Security and Trust, M. Tehranipoor and
C. Wang, Eds. New York, NY, USA:
Springer-Verlag, 2012, pp. 65–102.

[35] U. Rührmair, F. Sehnke, J. Sölter, G. Dror,
S. Devadas, and J. Schmidhuber, ‘‘Modeling
attacks on physical unclonable functions,’’ in
Proc. 17th ACM Conf. Comput. Commun.
Security, 2010, pp. 237–249.

[36] U. Rührmair, X. Xu, J. Slter, A. Mahmoud,
F. Koushanfar, and W. Burleson, ‘‘Power
and timing side channels for PUFs and their
efficient exploitation,’’ Rep. 2013/851, 2013.

[37] Y. Su, J. Holleman, and B. Otis, ‘‘A 1.6 pJ/bit
96 (percent) stable chip ID generating circuit
using process variations,’’ in Proc. IEEE Int.
Solid-State Circuits Conf., 2007, pp. 200–201.

[38] G. E. Suh, ‘‘AEGIS: A single-chip secure
processor,’’ Ph.D. dissertation, Dept. Electr.
Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA,
Aug. 2005.

[39] G. E. Suh and S. Devadas, ‘‘Physical
unclonable functions for device
authentication and secret key generation,’’
in Proc. ACM/IEEE Design Autom. Conf., 2007,
pp. 9–14.

[40] M.-D. M. Yu and S. Devadas, ‘‘Secure and
robust error correction for physical unclonable
functions,’’ IEEE Design Test Comput., vol. 27,
no. 1, pp. 48–65, Jan./Feb. 2010.

[41] M.-D. M. Yu, D. M’Raihi, R. Sowell, and
S. Devadas, ‘‘Lightweight and secure
PUF key storage using limits of machine
learning,’’ in Cryptographic Hardware and
Embedded SystemsVCHES 2011, vol. 6917.
Berlin, Germany: Springer-Verlag, 2011,
pp. 358–373, ser. Lecture Notes in Computer
Science.

[42] M.-D. M. Yu, R. Sowell, A. Singh, D. M’Raihi,
and S. Devadas, ‘‘Performance metrics and
empirical results of a PUF cryptographic key
generation ASIC,’’ in Proc. IEEE Int. Symp.
Hardware-Oriented Security Trust, 2012,
pp. 108–115.

ABOUT THE AUT HORS

Charles Herder received the B.S. degree in

electrical engineering and computer science, the

B.S. degree in physics, and the M.S. degree in

electrical engineering and computer science from

the Massachusetts Institute of Technology (MIT),

Cambridge, MA, USA.

He has published in many fields including

physical chemistry, single-photon detection, em-

bedded cryptosystems, and power management.

His research interests are in the physics of

computation, cryptography, computer architecture, and computer secu-

rity. His prior experience at Texas Instruments includes developing

embedded systems authentication technology and serving as lead

technical point-of-contact for the development of proprietary power

management and authentication systems for several major developers

including Dell, RIM, Cisco, and Phillips.

Meng-Day (Mandel) Yu received the M.S. degree

in electrical engineering from Stanford University,

Stanford, CA, USA.

He is a Technical Director at Verayo, San Jose,

CA, USA. Before that, he was the Manager of R&D

Engineering at TSI, a secure wireless radio startup.

Before that, he was an ASIC Engineer and later a

Systems Engineer at TeraLogic focused on signal

processing and conditional access systems. His

research interests include coding theory, signal

processing, and computer security.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

1140 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

Farinaz Koushanfar received the B.S. degree in

electrical engineering from Sharif University of

Technology, Tehran, Iran, in 1998, the M.S. degree

from the University of California Los Angeles

(UCLA), Los Angeles, CA, USA, and the M.A. degree

in statistics and the Ph.D. degree in electrical

engineering from the University of California

Berkeley, Berkeley, CA, USA in 2005.

She is an Associate Professor of Electrical and

Computer Engineering (ECE) at Rice University,

Houston, TX, USA. She is the Director of the Adaptive Computing and

Embedded Systems (ACES) Laboratory.

Srinivas Devadas (Fellow, IEEE) received the M.S.

and Ph.D. degrees from the University of California

Berkeley, Berkeley, CA, USA, in 1986 and 1988,

respectively.

He is the Webster Professor of Electrical

Engineering and Computer Science at the Massa-

chusetts Institute of Technology (MIT), Cambridge,

MA, USA. He joined MIT in 1988 and served as the

Associate Head of the Department of Electrical

Engineering and Computer Science, with respon-

sibility for Computer Science, from 2005 to 2011. His research interests

include Computer-Aided Design, computer architecture, and computer

security.

Herder et al. : Physical Unclonable Functions and Applications: A Tutorial

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

